Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (162.76 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for skylake-avx512.
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.99%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.71% of time
[ 4 / 4 ] Threads activity is good
On average, more than 99.71% of observed threads are actually active
[ 4 / 4 ] Affinity is good (99.98%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (87.41%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (94.10%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (5.89%) lower than cumulative innermost loop coverage (94.10%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 1 - kmeans-gcc-O3-funroll | Execution Time: 87 % - Vectorization Ratio: 14.29 % - Vector Length Use: 13.39 % | |
►Control Flow Issues | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Vectorization Roadblocks | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Loop 6 - kmeans-gcc-O3-funroll | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Loop 2 - kmeans-gcc-O3-funroll | Execution Time: 5 % - Vectorization Ratio: 12.12 % - Vector Length Use: 11.74 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (86.80 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for skylake-avx512.
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.61%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] CPU activity is good
CPU cores are active 93.85% of time
[ 4 / 4 ] Threads activity is good
On average, more than 187.68% of observed threads are actually active
[ 4 / 4 ] Affinity is good (99.74%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (87.24%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (93.90%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (5.72%) lower than cumulative innermost loop coverage (93.90%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 1 - kmeans-gcc-O3-funroll | Execution Time: 87 % - Vectorization Ratio: 14.29 % - Vector Length Use: 13.39 % | |
►Control Flow Issues | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Vectorization Roadblocks | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Loop 6 - kmeans-gcc-O3-funroll | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Loop 2 - kmeans-gcc-O3-funroll | Execution Time: 5 % - Vectorization Ratio: 12.12 % - Vector Length Use: 11.74 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (48.86 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for skylake-avx512.
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.90%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 3 / 4 ] CPU activity is below 90% (83.98%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Threads activity is good
On average, more than 335.86% of observed threads are actually active
[ 4 / 4 ] Affinity is good (99.33%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (86.76%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (93.37%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (5.53%) lower than cumulative innermost loop coverage (93.37%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 1 - kmeans-gcc-O3-funroll | Execution Time: 86 % - Vectorization Ratio: 14.29 % - Vector Length Use: 13.39 % | |
►Control Flow Issues | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Vectorization Roadblocks | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Loop 6 - kmeans-gcc-O3-funroll | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Loop 2 - kmeans-gcc-O3-funroll | Execution Time: 5 % - Vectorization Ratio: 12.12 % - Vector Length Use: 11.74 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (29.88 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for skylake-avx512.
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (97.62%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 2 / 4 ] CPU activity is below 90% (69.56%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Threads activity is good
On average, more than 556.24% of observed threads are actually active
[ 4 / 4 ] Affinity is good (98.74%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (85.27%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (91.78%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (5.84%) lower than cumulative innermost loop coverage (91.78%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 1 - kmeans-gcc-O3-funroll | Execution Time: 85 % - Vectorization Ratio: 14.29 % - Vector Length Use: 13.39 % | |
►Control Flow Issues | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Vectorization Roadblocks | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Loop 6 - kmeans-gcc-O3-funroll | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Loop 2 - kmeans-gcc-O3-funroll | Execution Time: 5 % - Vectorization Ratio: 12.12 % - Vector Length Use: 11.74 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (20.38 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for skylake-avx512.
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (95.10%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 2 / 4 ] CPU activity is below 90% (52.35%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Threads activity is good
On average, more than 836.85% of observed threads are actually active
[ 4 / 4 ] Affinity is good (98.01%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (83.03%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (89.38%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (5.72%) lower than cumulative innermost loop coverage (89.38%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 1 - kmeans-gcc-O3-funroll | Execution Time: 83 % - Vectorization Ratio: 14.29 % - Vector Length Use: 13.39 % | |
►Control Flow Issues | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Vectorization Roadblocks | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Loop 6 - kmeans-gcc-O3-funroll | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Loop 2 - kmeans-gcc-O3-funroll | Execution Time: 5 % - Vectorization Ratio: 12.12 % - Vector Length Use: 11.74 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (16.73 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for skylake-avx512.
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (92.19%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 1 / 4 ] CPU activity is below 90% (40.48%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Threads activity is good
On average, more than 1050.88% of observed threads are actually active
[ 4 / 4 ] Affinity is good (97.53%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (80.37%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (86.54%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (5.65%) lower than cumulative innermost loop coverage (86.54%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 1 - kmeans-gcc-O3-funroll | Execution Time: 80 % - Vectorization Ratio: 14.29 % - Vector Length Use: 13.39 % | |
►Control Flow Issues | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Vectorization Roadblocks | 20 | |
○ | [SA] Too many paths (16 paths) - Simplify control structure. There are 16 issues ( = paths) costing 1 point each with a malus of 4 points. | 20 |
►Loop 6 - kmeans-gcc-O3-funroll | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Loop 2 - kmeans-gcc-O3-funroll | Execution Time: 5 % - Vectorization Ratio: 12.12 % - Vector Length Use: 11.74 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 260 | |
○ | [SA] Too many paths (254 paths) - Simplify control structure. There are 254 issues ( = paths) costing 1 point each with a malus of 4 points. | 258 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |