Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (339.57 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)
To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.
[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 12.44 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (73.20%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 99.50% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.50% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (67.69%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (71.67%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (72.78%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.53%) lower than cumulative innermost loop coverage (71.67%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 9 - kmeans-clang-O3-ffast-math | Execution Time: 67 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 44 - kmeans-clang-O3-ffast-math | Execution Time: 3 % - Vectorization Ratio: 100.00 % - Vector Length Use: 35.53 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Data Access Issues | 40 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 6 issues (= instructions) costing 4 points each. | 24 |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 4 issues (= instructions) costing 1 point each. | 4 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Inefficient Vectorization | 28 | |
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 6 issues (= instructions) costing 4 points each. | 24 |
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 4 issues (= instructions) costing 1 point each. | 4 |
►Loop 8 - kmeans-clang-O3-ffast-math | Execution Time: 1 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 0 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.28 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
[ 4 / 4 ] Application profile is long enough (296.18 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)
To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.
[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 8.21 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (49.59%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 168.38% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.63% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (44.44%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (45.37%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (81.65%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (30.49%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (4.22%) lower than cumulative innermost loop coverage (45.37%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 9 - kmeans-clang-O3-ffast-math | Execution Time: 44 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 43 - kmeans-clang-O3-ffast-math | Execution Time: 2 % - Vectorization Ratio: 26.45 % - Vector Length Use: 12.71 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 7 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 7 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 7 - kmeans-clang-O3-ffast-math | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 8.93 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 12 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 8 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 45 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 % | |
►Loop Computation Issues | 11 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
○ | [SA] Peel/tail loop, considered having a low iteration count - Perform full unroll. Force compiler to use masked instructions. This issue costs 5 points. | 5 |
►Control Flow Issues | 5 | |
○ | [SA] Peel/tail loop, considered having a low iteration count - Perform full unroll. Force compiler to use masked instructions. This issue costs 5 points. | 5 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Loop 0 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.28 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
[ 4 / 4 ] Application profile is long enough (191.38 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)
To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.
[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 8.40 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (48.67%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 255.50% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.67% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (43.37%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (44.25%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (81.31%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (47.14%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (4.42%) lower than cumulative innermost loop coverage (44.25%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 9 - kmeans-clang-O3-ffast-math | Execution Time: 43 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 43 - kmeans-clang-O3-ffast-math | Execution Time: 2 % - Vectorization Ratio: 26.45 % - Vector Length Use: 12.71 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 7 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 7 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 7 - kmeans-clang-O3-ffast-math | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 8.93 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 12 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 8 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 45 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 % | |
►Loop Computation Issues | 11 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
○ | [SA] Peel/tail loop, considered having a low iteration count - Perform full unroll. Force compiler to use masked instructions. This issue costs 5 points. | 5 |
►Control Flow Issues | 5 | |
○ | [SA] Peel/tail loop, considered having a low iteration count - Perform full unroll. Force compiler to use masked instructions. This issue costs 5 points. | 5 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Loop 0 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.28 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
[ 4 / 4 ] Application profile is long enough (142.48 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)
To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.
[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 8.16 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (49.31%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 349.36% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.70% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (43.80%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (44.62%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (81.65%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (63.30%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (4.69%) lower than cumulative innermost loop coverage (44.62%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 9 - kmeans-clang-O3-ffast-math | Execution Time: 43 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 43 - kmeans-clang-O3-ffast-math | Execution Time: 2 % - Vectorization Ratio: 26.45 % - Vector Length Use: 12.71 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 7 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 7 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 7 - kmeans-clang-O3-ffast-math | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 8.93 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 12 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 8 - kmeans-clang-O3-ffast-math | Execution Time: 1 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 45 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 % | |
►Loop Computation Issues | 11 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
○ | [SA] Peel/tail loop, considered having a low iteration count - Perform full unroll. Force compiler to use masked instructions. This issue costs 5 points. | 5 |
►Control Flow Issues | 5 | |
○ | [SA] Peel/tail loop, considered having a low iteration count - Perform full unroll. Force compiler to use masked instructions. This issue costs 5 points. | 5 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Loop 0 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.28 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
[ 4 / 4 ] Application profile is long enough (119.18 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)
To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.
[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 8.65 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (48.66%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 415.44% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.68% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (43.35%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (44.22%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (81.02%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (77.71%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (4.44%) lower than cumulative innermost loop coverage (44.22%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 9 - kmeans-clang-O3-ffast-math | Execution Time: 43 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 43 - kmeans-clang-O3-ffast-math | Execution Time: 2 % - Vectorization Ratio: 26.45 % - Vector Length Use: 12.71 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 7 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 7 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 7 - kmeans-clang-O3-ffast-math | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 8.93 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 12 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 8 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 45 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 % | |
►Loop Computation Issues | 11 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
○ | [SA] Peel/tail loop, considered having a low iteration count - Perform full unroll. Force compiler to use masked instructions. This issue costs 5 points. | 5 |
►Control Flow Issues | 5 | |
○ | [SA] Peel/tail loop, considered having a low iteration count - Perform full unroll. Force compiler to use masked instructions. This issue costs 5 points. | 5 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Loop 0 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.28 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
[ 4 / 4 ] Application profile is long enough (106.55 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)
To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.
[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 8.34 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (48.59%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 460.66% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.63% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (43.30%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (44.25%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (81.41%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (84.14%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (4.34%) lower than cumulative innermost loop coverage (44.25%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 9 - kmeans-clang-O3-ffast-math | Execution Time: 43 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Data Access Issues | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Inefficient Vectorization | 1 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each. | 1 |
►Loop 43 - kmeans-clang-O3-ffast-math | Execution Time: 2 % - Vectorization Ratio: 26.45 % - Vector Length Use: 12.71 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 7 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 7 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 7 - kmeans-clang-O3-ffast-math | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 8.93 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 12 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 8 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 2 | |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 5 | |
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 45 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.61 % | |
►Loop Computation Issues | 11 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
○ | [SA] Peel/tail loop, considered having a low iteration count - Perform full unroll. Force compiler to use masked instructions. This issue costs 5 points. | 5 |
►Control Flow Issues | 5 | |
○ | [SA] Peel/tail loop, considered having a low iteration count - Perform full unroll. Force compiler to use masked instructions. This issue costs 5 points. | 5 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Loop 0 - kmeans-clang-O3-ffast-math | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.28 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 1 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 3 | |
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each. | 1 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |