options

kmeans-clang-O3-ffast-math - 2025-08-07 21:32:02 - MAQAO 2025.1.2

Help is available by moving the cursor above any symbol or by checking MAQAO website.

  • run_0
  • run_1
  • run_2
  • run_3
  • run_4
  • run_5

Stylizer  

[ 4 / 4 ] Application profile is long enough (338.12 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (100.00%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 99.19% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.19% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (97.78%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (97.79%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (72.77%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (2.21%) lower than cumulative innermost loop coverage (97.79%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 9 - kmeans-clang-O3-ffast-math+Execution Time: 97 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Vectorization Roadblocks+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 8 - kmeans-clang-O3-ffast-math+Execution Time: 2 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+2
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2

Stylizer  

[ 4 / 4 ] Application profile is long enough (245.97 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (73.11%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 152.30% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 90.35% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (69.76%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (69.76%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (80.58%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.35%) lower than cumulative innermost loop coverage (69.76%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 9 - kmeans-clang-O3-ffast-math+Execution Time: 69 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Vectorization Roadblocks+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 7 - kmeans-clang-O3-ffast-math+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 8.93 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+2
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 8 - kmeans-clang-O3-ffast-math+Execution Time: 1 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+2
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2

Stylizer  

[ 4 / 4 ] Application profile is long enough (129.85 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (74.14%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 226.32% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (86.58%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (69.42%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (69.42%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (81.57%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.01%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (4.73%) lower than cumulative innermost loop coverage (69.42%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 9 - kmeans-clang-O3-ffast-math+Execution Time: 69 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Vectorization Roadblocks+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 7 - kmeans-clang-O3-ffast-math+Execution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 8.93 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+2
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 8 - kmeans-clang-O3-ffast-math+Execution Time: 2 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+2
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2

Stylizer  

[ 4 / 4 ] Application profile is long enough (62.71 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (73.68%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 294.66% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (83.93%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (69.70%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (69.70%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (80.95%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.02%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.98%) lower than cumulative innermost loop coverage (69.70%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 9 - kmeans-clang-O3-ffast-math+Execution Time: 69 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Vectorization Roadblocks+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 7 - kmeans-clang-O3-ffast-math+Execution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 8.93 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+2
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 8 - kmeans-clang-O3-ffast-math+Execution Time: 1 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+2
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2

Stylizer  

[ 4 / 4 ] Application profile is long enough (31.04 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (72.88%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 351.66% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (82.68%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (69.00%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (69.01%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (80.76%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.06%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.87%) lower than cumulative innermost loop coverage (69.01%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 9 - kmeans-clang-O3-ffast-math+Execution Time: 68 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Vectorization Roadblocks+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 7 - kmeans-clang-O3-ffast-math+Execution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 8.93 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+2
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 8 - kmeans-clang-O3-ffast-math+Execution Time: 1 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+2
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2

Stylizer  

[ 4 / 4 ] Application profile is long enough (18.86 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (72.30%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 381.60% of observed threads are actually active

[ 3 / 4 ] CPU activity is below 90% (82.22%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (68.70%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (68.77%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 4 ] Affinity stability is lower than 90% (80.70%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.12%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.54%) lower than cumulative innermost loop coverage (68.77%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 9 - kmeans-clang-O3-ffast-math+Execution Time: 68 % - Vectorization Ratio: 55.00 % - Vector Length Use: 18.59 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Vectorization Roadblocks+2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Inefficient Vectorization+1
[SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 1 issues (= instructions) costing 1 point each.1
Loop 7 - kmeans-clang-O3-ffast-math+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 8.93 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+2
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 8 - kmeans-clang-O3-ffast-math+Execution Time: 1 % - Vectorization Ratio: 22.22 % - Vector Length Use: 12.85 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Data Access Issues+2
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+5
[SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each.3
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
×