Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (330.57 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake.
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (100.00%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 99.53% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.53% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (98.89%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (98.89%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 4 ] Affinity stability is lower than 90% (73.35%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.11%) lower than cumulative innermost loop coverage (98.89%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2 - kmeans-gcc-O2 | Execution Time: 98 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.05 % | |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Loop 3 - kmeans-gcc-O2 | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.25 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (217.85 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.07%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 199.21% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.61% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (96.95%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (96.95%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 2 / 4 ] Affinity stability is lower than 90% (58.16%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (3.84%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.12%) lower than cumulative innermost loop coverage (96.95%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2 - kmeans-gcc-O2 | Execution Time: 96 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.05 % | |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Loop 3 - kmeans-gcc-O2 | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.25 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (157.90 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake.
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (96.15%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 398.61% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.66% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (95.04%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (95.04%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 1 / 4 ] Affinity stability is lower than 90% (42.83%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.04%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.11%) lower than cumulative innermost loop coverage (95.04%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2 - kmeans-gcc-O2 | Execution Time: 95 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.05 % | |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Loop 3 - kmeans-gcc-O2 | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.25 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (127.72 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option is correctly used
[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (94.91%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 797.65% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.71% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (93.79%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (93.80%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 0 / 4 ] Affinity stability is lower than 90% (29.21%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.11%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.11%) lower than cumulative innermost loop coverage (93.80%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2 - kmeans-gcc-O2 | Execution Time: 93 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.05 % | |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Loop 3 - kmeans-gcc-O2 | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.25 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (121.76 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option is correctly used
[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor
Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 0 / 0 ] Fastmath not used
Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (93.93%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 996.79% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.68% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (92.86%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (92.87%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 0 / 4 ] Affinity stability is lower than 90% (25.72%)
Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.18%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.07%) lower than cumulative innermost loop coverage (92.87%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 2 - kmeans-gcc-O2 | Execution Time: 92 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.05 % | |
►Control Flow Issues | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
►Loop 3 - kmeans-gcc-O2 | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.25 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |