Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (497.48 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 2.40 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 0.00% of the time spent in analyzed modules. Check that -g and (-grecord-gcc-switches or -frecord-command-line) are present. Remark: if -g and (-grecord-gcc-switches / -frecord-command-line) are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3.00 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (99.10%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 99.90% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.91% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (37.65%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (49.35%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (100.00%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.06%)
[ 0 / 3 ] Cumulative Outermost/In between loops coverage (49.75%) greater than cumulative innermost loop coverage (49.35%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 19 - md-acfl-Ofast | Execution Time: 37 % - Vectorization Ratio: 25.00 % - Vector Length Use: 31.25 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 20 - md-acfl-Ofast | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 26 - md-acfl-Ofast | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 14 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each. | 8 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 23 - md-acfl-Ofast | Execution Time: 9 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 25 - md-acfl-Ofast | Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 24 - md-acfl-Ofast | Execution Time: 7 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 21 - md-acfl-Ofast | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 22 - md-acfl-Ofast | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 18 - md-acfl-Ofast | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 17 - md-acfl-Ofast | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 22.37 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (257.71 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 2.40 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 0.01% of the time spent in analyzed modules. Check that -g and (-grecord-gcc-switches or -frecord-command-line) are present. Remark: if -g and (-grecord-gcc-switches / -frecord-command-line) are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3.00 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.65%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 199.48% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.75% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (37.16%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (49.70%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.99%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.13%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (48.95%) lower than cumulative innermost loop coverage (49.70%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 19 - md-acfl-Ofast | Execution Time: 37 % - Vectorization Ratio: 25.00 % - Vector Length Use: 31.25 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 20 - md-acfl-Ofast | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 26 - md-acfl-Ofast | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 14 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each. | 8 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 23 - md-acfl-Ofast | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 25 - md-acfl-Ofast | Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 24 - md-acfl-Ofast | Execution Time: 7 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 21 - md-acfl-Ofast | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 22 - md-acfl-Ofast | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 18 - md-acfl-Ofast | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 17 - md-acfl-Ofast | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 22.37 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (133.45 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 2.40 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 0.01% of the time spent in analyzed modules. Check that -g and (-grecord-gcc-switches or -frecord-command-line) are present. Remark: if -g and (-grecord-gcc-switches / -frecord-command-line) are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3.00 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (97.27%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 396.97% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.27% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (36.04%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (49.71%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.99%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.27%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (47.56%) lower than cumulative innermost loop coverage (49.71%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 19 - md-acfl-Ofast | Execution Time: 36 % - Vectorization Ratio: 25.00 % - Vector Length Use: 31.25 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 23 - md-acfl-Ofast | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 26 - md-acfl-Ofast | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 14 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each. | 8 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 20 - md-acfl-Ofast | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 25 - md-acfl-Ofast | Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 24 - md-acfl-Ofast | Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 21 - md-acfl-Ofast | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 22 - md-acfl-Ofast | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 18 - md-acfl-Ofast | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 17 - md-acfl-Ofast | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 22.37 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (70.86 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 2.40 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 0.01% of the time spent in analyzed modules. Check that -g and (-grecord-gcc-switches or -frecord-command-line) are present. Remark: if -g and (-grecord-gcc-switches / -frecord-command-line) are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3.00 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (94.57%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 786.62% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 98.38% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (34.11%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (49.22%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.98%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.89%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (45.35%) lower than cumulative innermost loop coverage (49.22%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 19 - md-acfl-Ofast | Execution Time: 34 % - Vectorization Ratio: 25.00 % - Vector Length Use: 31.25 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 23 - md-acfl-Ofast | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 26 - md-acfl-Ofast | Execution Time: 9 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 14 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each. | 8 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 20 - md-acfl-Ofast | Execution Time: 9 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 25 - md-acfl-Ofast | Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 24 - md-acfl-Ofast | Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 22 - md-acfl-Ofast | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 21 - md-acfl-Ofast | Execution Time: 6 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 18 - md-acfl-Ofast | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 17 - md-acfl-Ofast | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 22.37 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (38.36 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 2.40 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 0.02% of the time spent in analyzed modules. Check that -g and (-grecord-gcc-switches or -frecord-command-line) are present. Remark: if -g and (-grecord-gcc-switches / -frecord-command-line) are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3.00 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (90.59%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 1551.99% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 97.11% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (31.73%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (49.03%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.97%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (1.19%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (41.57%) lower than cumulative innermost loop coverage (49.03%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 19 - md-acfl-Ofast | Execution Time: 31 % - Vectorization Ratio: 25.00 % - Vector Length Use: 31.25 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 23 - md-acfl-Ofast | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 25 - md-acfl-Ofast | Execution Time: 9 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 20 - md-acfl-Ofast | Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 24 - md-acfl-Ofast | Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 26 - md-acfl-Ofast | Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 14 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each. | 8 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 22 - md-acfl-Ofast | Execution Time: 5 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 21 - md-acfl-Ofast | Execution Time: 5 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 18 - md-acfl-Ofast | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 17 - md-acfl-Ofast | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 22.37 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
[ 4 / 4 ] Application profile is long enough (20.84 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 2.40 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 0.09% of the time spent in analyzed modules. Check that -g and (-grecord-gcc-switches or -frecord-command-line) are present. Remark: if -g and (-grecord-gcc-switches / -frecord-command-line) are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3.00 / 3 ] Architecture specific option -mcpu is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (86.57%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 3057.98% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 95.77% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (28.25%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (49.44%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.93%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (2.78%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (37.13%) lower than cumulative innermost loop coverage (49.44%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 19 - md-acfl-Ofast | Execution Time: 28 % - Vectorization Ratio: 25.00 % - Vector Length Use: 31.25 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 23 - md-acfl-Ofast | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 25 - md-acfl-Ofast | Execution Time: 9 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 24 - md-acfl-Ofast | Execution Time: 9 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 20 - md-acfl-Ofast | Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 26 - md-acfl-Ofast | Execution Time: 7 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 14 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each. | 8 |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 22 - md-acfl-Ofast | Execution Time: 5 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 21 - md-acfl-Ofast | Execution Time: 5 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 18 - md-acfl-Ofast | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 17 - md-acfl-Ofast | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 22.37 % | |
►Control Flow Issues | 2 | |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Vectorization Roadblocks | 1002 | |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |