options

md-gcc-O3 - 2025-08-20 12:02:39 - MAQAO 2025.1.2

Help is available by moving the cursor above any symbol or by checking MAQAO website.

  • run_0
  • run_1
  • run_2
  • run_3
  • run_4
  • run_5

Stylizer  

[ 4 / 4 ] Application profile is long enough (527.01 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 1.67 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 1.34 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 44.27% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (55.22%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 99.98% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.98% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (46.24%), representing an hotspot for the application

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (7.61%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (100.00%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.06%)

[ 0 / 3 ] Cumulative Outermost/In between loops coverage (47.60%) greater than cumulative innermost loop coverage (7.61%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.58%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - md-gcc-O3+Execution Time: 46 % - Vectorization Ratio: 0.00 % - Vector Length Use: 24.71 %
Loop Computation Issues+22
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 5 issues (= instructions) costing 4 points each.20
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 25 - md-gcc-O3+Execution Time: 3 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 22 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 26 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 29 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 39.29 %
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 27 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 23 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 24 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 21 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.31 %
Control Flow Issues+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 43 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+7
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6

Stylizer  

[ 4 / 4 ] Application profile is long enough (272.42 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 1.66 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 1.32 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 44.80% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (54.34%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 199.95% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.99% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (45.39%), representing an hotspot for the application

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (7.50%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.99%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.22%)

[ 0 / 3 ] Cumulative Outermost/In between loops coverage (46.84%) greater than cumulative innermost loop coverage (7.50%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.57%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - md-gcc-O3+Execution Time: 45 % - Vectorization Ratio: 0.00 % - Vector Length Use: 24.71 %
Loop Computation Issues+22
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 5 issues (= instructions) costing 4 points each.20
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 25 - md-gcc-O3+Execution Time: 3 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 22 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 26 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 29 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 39.29 %
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 27 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 23 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 21 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.31 %
Control Flow Issues+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 24 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 43 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+7
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6

Stylizer  

[ 4 / 4 ] Application profile is long enough (140.80 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 1.62 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 1.30 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 46.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (52.17%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 399.83% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.98% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (43.67%), representing an hotspot for the application

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (7.03%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.99%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.42%)

[ 0 / 3 ] Cumulative Outermost/In between loops coverage (45.14%) greater than cumulative innermost loop coverage (7.03%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.56%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - md-gcc-O3+Execution Time: 43 % - Vectorization Ratio: 0.00 % - Vector Length Use: 24.71 %
Loop Computation Issues+22
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 5 issues (= instructions) costing 4 points each.20
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 25 - md-gcc-O3+Execution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 22 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 29 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 39.29 %
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 26 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 27 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 24 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 21 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.31 %
Control Flow Issues+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 23 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 43 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
Vectorization Roadblocks+7
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6

Stylizer  

[ 4 / 4 ] Application profile is long enough (74.39 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 1.58 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 1.27 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 47.28% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (48.98%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 799.45% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.98% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (41.30%), representing an hotspot for the application

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (6.32%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.98%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.86%)

[ 0 / 3 ] Cumulative Outermost/In between loops coverage (42.67%) greater than cumulative innermost loop coverage (6.32%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.53%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - md-gcc-O3+Execution Time: 41 % - Vectorization Ratio: 0.00 % - Vector Length Use: 24.71 %
Loop Computation Issues+22
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 5 issues (= instructions) costing 4 points each.20
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 25 - md-gcc-O3+Execution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 22 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 29 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 39.29 %
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 26 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 27 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 21 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.31 %
Control Flow Issues+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 23 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 24 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 41 - md-gcc-O3Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %

Stylizer  

[ 4 / 4 ] Application profile is long enough (40.66 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 1.52 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 1.21 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 49.49% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (44.31%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 1597.92% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.96% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (37.47%), representing an hotspot for the application

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (5.62%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.98%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (2.31%)

[ 0 / 3 ] Cumulative Outermost/In between loops coverage (38.69%) greater than cumulative innermost loop coverage (5.62%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.45%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - md-gcc-O3+Execution Time: 37 % - Vectorization Ratio: 0.00 % - Vector Length Use: 24.71 %
Loop Computation Issues+22
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 5 issues (= instructions) costing 4 points each.20
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 25 - md-gcc-O3+Execution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 22 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 29 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 39.29 %
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 26 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 27 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 21 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.31 %
Control Flow Issues+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 23 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 24 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 41 - md-gcc-O3Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %

Stylizer  

[ 4 / 4 ] Application profile is long enough (22.24 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 1.42 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 1.14 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 52.58% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (39.44%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Threads activity is good

On average, more than 3191.46% of observed threads are actually active

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.91% of time

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (33.40%), representing an hotspot for the application

[ 0 / 4 ] Too little time of the experiment time spent in analyzed innermost loops (5.00%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (99.96%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (6.73%)

[ 0 / 3 ] Cumulative Outermost/In between loops coverage (34.43%) greater than cumulative innermost loop coverage (5.00%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.43%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 28 - md-gcc-O3+Execution Time: 33 % - Vectorization Ratio: 0.00 % - Vector Length Use: 24.71 %
Loop Computation Issues+22
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 5 issues (= instructions) costing 4 points each.20
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 25 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 22 - md-gcc-O3+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 29 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 39.29 %
Control Flow Issues+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+14
[SA] Too many paths (8 paths) - Simplify control structure. There are 8 issues ( = paths) costing 1 point each with a malus of 4 points.12
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 26 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 41 - md-gcc-O3Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop 27 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 21 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 20.31 %
Control Flow Issues+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+18
[SA] Too many paths (12 paths) - Simplify control structure. There are 12 issues ( = paths) costing 1 point each with a malus of 4 points.16
[SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 23 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Loop 24 - md-gcc-O3+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 25.00 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Vectorization Roadblocks+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
×