options

ecrad - 2025-11-24 15:52:23 - MAQAO 2025.1.3

Help is available by moving the cursor above any symbol or by checking MAQAO website.

  • run_0

Stylizer  

[ 4 / 4 ] Application profile is long enough (68.63 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 100.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 12.42 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (83.64%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 3 / 4 ] A significant amount of threads are idle (24.14%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (83.12%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (12.50%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (75.09%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Affinity is good (91.87%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 0 / 3 ] Too many functions do not use all threads

Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (12.54%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (8.55%) lower than cumulative innermost loop coverage (75.09%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (1.62%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 2788 - ecrad+Execution Time: 12 % - Vectorization Ratio: 3.31 % - Vector Length Use: 68.18 %
Loop Computation Issues+12
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 3 issues (= instructions) costing 4 points each.12
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+64
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 16 issues ( = indirect data accesses) costing 4 point each.64
Vectorization Roadblocks+65
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 16 issues ( = indirect data accesses) costing 4 point each.64
Loop 1629 - ecrad+Execution Time: 8 % - Vectorization Ratio: 0.00 % - Vector Length Use: 54.17 %
Data Access Issues+16
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 2 issues ( = indirect data accesses) costing 4 point each.8
Vectorization Roadblocks+16
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each.8
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 2 issues ( = indirect data accesses) costing 4 point each.8
Loop 1689 - ecrad+Execution Time: 4 % - Vectorization Ratio: 9.09 % - Vector Length Use: 56.82 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+18
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12
Vectorization Roadblocks+18
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each.6
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each.12
Loop 2118 - ecrad+Execution Time: 4 % - Vectorization Ratio: 4.44 % - Vector Length Use: 68.19 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each.8
Data Access Issues+20
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 10 issues ( = data accesses) costing 2 point each.20
Vectorization Roadblocks+20
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 10 issues ( = data accesses) costing 2 point each.20
Loop 2786 - ecrad+Execution Time: 3 % - Vectorization Ratio: 17.65 % - Vector Length Use: 74.63 %
Loop Computation Issues+4
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+24
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 6 issues ( = indirect data accesses) costing 4 point each.24
Vectorization Roadblocks+25
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 6 issues ( = indirect data accesses) costing 4 point each.24
Loop 1537 - ecrad+Execution Time: 3 % - Vectorization Ratio: 0.00 % - Vector Length Use: 50.00 %
Loop Computation Issues+10
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each.8
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues0
Vectorization Roadblocks+1000
[SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point.1000
Loop 2053 - ecrad+Execution Time: 1 % - Vectorization Ratio: 6.25 % - Vector Length Use: 70.31 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 2 issues (= instructions) costing 4 points each.8
Data Access Issues+18
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 9 issues ( = data accesses) costing 2 point each.18
Vectorization Roadblocks+18
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 9 issues ( = data accesses) costing 2 point each.18
Loop 2785 - ecrad+Execution Time: 1 % - Vectorization Ratio: 20.22 % - Vector Length Use: 71.98 %
Loop Computation Issues+16
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each.16
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+36
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 9 issues ( = indirect data accesses) costing 4 point each.36
Vectorization Roadblocks+37
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 9 issues ( = indirect data accesses) costing 4 point each.36
Loop 3207 - ecrad+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 50.00 %
Loop Computation Issues+8
[SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each.4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Data Access Issues+20
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 5 issues ( = indirect data accesses) costing 4 point each.20
Vectorization Roadblocks+20
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 5 issues ( = indirect data accesses) costing 4 point each.20
Loop 1530 - ecrad+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 66.67 %
Loop Computation Issues+6
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Data Access Issues+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
Vectorization Roadblocks+8
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each.4
×